Sectoring

$$
\operatorname{SIR} \approx \frac{1}{K}(\sqrt{3 N})^{\gamma} \quad C=\frac{A_{\text {toaal }}}{A_{\text {cell }}} \times \frac{S}{N}
$$

- Advantages
- Reduce interference by reducing K
- Increase SIR (better call quality).
- The increase in SIR can be traded with reducing the cluster size (N) which increase the capacity.
- Disadvantages
- Increase number of antennas at each base station.
- Next section: Decrease trunking efficiency due to channel sectoring at the base station.
- The available channels in the cell must be subdivided and dedicated to a specific antenna.

Make sure that you understand where numbers in this table come from!

Example 3 (3)

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	3	3
SIR [dB]	18.7	16.1	19.1
\#channels/cell	$\lfloor 400 / 7\rfloor=57$	$\lfloor 400 / 3\rfloor=133$	$\lfloor 400 / 3\rfloor=133$
\#sectors	1	3	6
\#channels/sector	57	$\left\lfloor\frac{400}{3} / 3\right\rfloor=44$	$\left\lfloor\frac{400}{3} / 6\right\rfloor=22$
A [Erlangs]/sector	51.55	38.56	17.13
A [Erlangs]/cell	51.55	$38.56 \times 3=115.68$	$17.13 \times 6=102.78$
\#users/cell	18558	41645	37001

Assume that each user makes 2 calls/day and $2 \mathrm{~min} /$ call on average $\rightarrow 1 / 360$ Erlangs.
Conclusion: With $\gamma=4$, $\operatorname{SIR} \geq 15 \mathrm{~dB}$, and $\mathrm{Pb} \leq 5 \%$, 120° sectoring with cluster size $\mathrm{N}=3$ should be used.

Example 3 (4): Remarks

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	7	7
SIR [dB]	18.7	23.43	26.44
\#channels/cell	$\lfloor 400 / 7\rfloor=57$	$\lfloor 400 / 7\rfloor=57$	$\lfloor 400 / 7]=57$
\#sectors	1	3	6
\#channels/sector	57	$\left\lfloor\frac{400}{7} / 3\right]=19$	$\left\lfloor\frac{400}{7} / 6\right\rfloor=9$
A [Erlangs]/sector	51.55	14.31	5.37
A [Erlangs]/cell	51.55	$14.31 \times 3=42.94$	$5.37 \times 6=32.22$

For the same N, we see that 120° sectoring and 60° sectoring give much better SIR. However, sectoring reduces the trunking efficiency and therefore suffer reduced value of A .

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	7	7
SIR [dB]	18.7	23.43	26.44
\#channels/cell	$\lfloor 400 / 7\rfloor=57$	$\lfloor 400 / 7]=57$	$\lfloor 400 / 7]=57$
\#sectors	1	3	6
\#channels/sector	57	$\left\lfloor\frac{400}{7} / 3\right]=19$	$\left\lfloor\frac{400}{7} / 6\right]=9$
A [Erlangs]/sector	51.55	14.31	5.37
A [Erlangs]/cell	51.55	$14.31 \times 3=42.94$	$5.37 \times 6=32.22$

Idea: The values of SIR are too high for the cases of 120° sectoring and 60° sectoring. We can further reduce the cluster size. This increases the number of channels per cell and hence per sector.

	Omnidirectional	120° Sectoring	60° Sectoring
K	6	2	1
N	7	3	3
SIR [dB]	18.7	16.1	19.1
\#channels/cell	$\lfloor 400 / 7]=57$	$\lfloor 400 / 3]=133$	$\lfloor 400 / 3]=133$
\#sectors	1	3	6
\#channels/sector	57	$\left[\frac{400}{3} / 3\right]=44$	$\left\lfloor\frac{400}{3} / 6\right\rfloor=22$
A [Erlangs]/sector	51.55	38.56	17.13
A [Erlangs]/cell	51.55	$38.56 \times 3=115.68$	$17.13 \times 6=102.78$

